

Office of Power Technologies Distributed Generation Overview

Turbine Power Systems Conference

Galveston February 25-27, 2002

Stephen Waslo
Chicago Operations Office
U.S. Department of Energy

Introduction

The Problem

Power Reliability Concerns

"If the energy infrastructure of this country is inadequate or in some way excessively costly, it will undermine economic growth, and is therefore a major issue that must be addressed."

Alan Greenspan, January 26, 2001

2009 Projections

Areas with Capacity Margins < 10 percent</p>

Source: National Electricity Reliability Council, 2000

Solving the Growing Oil Gap

Renewables, Efficiency and Natural Gas Can Help

"To meet our energy challenge, we must put to good use the resources around us and the talents within us." Vice President Dick Cheney

Hydrogen Energy

Biofuels, Power, and Products

Natural Gas – Distributed Power

Distributed Energy Recources

A Key Solution

Distributed Energy Resources

DER "Prime Movers"

Examples

Advanced Turbines

Reciprocating Engines

Photovoltaics

Fuel Cells

Wind

Microturbines

Office of Power Technologies

Renewable Energy

- Biopower
- Solar Technologies
- Wind
- Geothermal
- Hydrogen
- Hydropower

Distributed Energy Resources

- Natural Gas turbines, fuel cells & engines
- Interconnection Standards
- Thermally Activated Technologies
- Natural Gas-Renewable Hybrids

Reliability/ Power Quality

- Power Delivery
- Superconductivity
- Transmission Reliability
- Energy Storage
- Smart Controls

DER Strategic Activities

ATS

The Current Baseline

Mercury 50 Demo Sites

Development Test Cell

Peaking Duty at Remote Mine

Load Management at Factory

Municipal Utility Economic Dispatch

CMC Gas Turbine Combustor Liners

- Texaco Bakersfield, CA
 - >19,900 Hours of Field Operation
 - High Time: >13,937 Hours on One Liner
 Set
 - Liners: H-ACI SiC/SiC (CVI/MI)
 - UTC EBC
- Malden Mills Lawrence, MA
 - >9,500 Hours of Field Operation
 - Liners: H-ACI/BFG SiC/SiC (CVI/MI)
 - UTC EBC
- Reduced Emissions
 - <15 ppm NOx, < 10 ppm CO</p>

RAMD Test at Silicon Valley Power

- Reliability, Availability, Maintainability, Durability
- Run 8000 hours on the grid
- Three Kawasaki M1A-13X Turbines to be installed in Northeast
- Candidate for GE 10 in California

Through 7400 hours:

NOx < 2.5 ppm

CO < 6 ppm

UHC < 6 ppm

Advanced HPT Vane

- Current Costs \$45,000 per engine per year or \$0.0013 per Kw-hr
- Operational cost savings are being verified by field test evaluation
- Advanced material HPT vanes currently installed at two end user sites accruing durability time

Gas Turbine Technology Drivers

- Emissions standards more restrictive
- Horizons of new technologies
- Critical advances in materials systems
- New targets
 - < 5 ppm NOx</p>
 - Consideration for transition to back-up fuels
 - Durable for at least 8000 hours
 - No more than 10% cost add-on
 - No negative impacts on gas turbine performance

Advanced Materials

- Higher firing temperatures
- Reduced component cooling

Improved thermal efficiency Increased output power

Reduced emissions of NOx and CO

Energy Savings Environmental Benefits

- Improve component durability
 - 30,000+ hrs required
 - · turbine blades, nozzles
 - Simplify component designs

→Lower Component Cost

History of Engine Materials

Airfoil Casting

Prime Reliant Thermal Barrier Coatings (TBC)

Low Emissions Perspective on the Options

Conventional Turbine

+ Steam injection + Lean premix

Catalytic Combustor Turbine

Less than 2.5 ppm

DER Advanced Turbine Program

Advanced Turbine Program Goals

- Development of environmental and performance solutions for gas turbines that broaden opportunities for meeting the nation's energy demand with efficient, affordable, and reliable power.
- To reach this goal, bring together relevant stakeholders in strategic partnerships to develop, test, and commercialize optimized and fully integrated low-emission technologies and advanced materials.

Contractors

Advanced Materials

- GE Corporate Research & Development
- Teledyne Continental Motors
- Siemens Westinghouse
- Solar Turbines

Low Emissions

- Alzeta
- Catalytica
- Honeywell Engines and Systems
- Precision Combustion
- Solar Turbines

DOE Funding is \$14.0 Million over 3 years

Advanced TBC for W501F Siemens- Westinghouse

- ·Vanes and blades successfully coated
- Improved sintering resistance
- ·High resistance to thermal cycling
- •20% reduction in thermal conductivity
- •Engine tests to demonstrate extended maintenance interval and lower COE

Turbine Inlet Nozzle and Rotor

- Improve efficiency 120%
- •50% reduction in cost of rotor
- Significant cost reduction for other parts

Low Cost Powdered Nickel Superalloy

Turbine Scroll

GE's Path for CMCs in Gas Turbines

Advanced Materials Solar Turbines Mercury 50

Focuses on improving durability of combustor liners using advanced TBCs, ODS alloys, and CFCCs, and fuel injectors using ODS and monolithic silicon nitride

Catalytica Combustion System

- •Improve performance of Catalyst
- Solve system design problems
- Select optimal materials
- ·Lower maintenance costs
- ·Ready for commercial turbine

Alzeta Surface Stabilized Combustion

- Uniform axial flow
- Cast monolithic
- ·No weld seams
- Selectively perforated
- \bullet NOx < 3 ppm

T60 Injector

Precision Combustion RCL

- •No preburner: Compressor discharge
- •Robust: No flashback / auto-ignition Tolerates fuel/air transients
- Durable: Well-moderated temperatures
- •Compact: Available space, low ∆p
- •Premixing: Relaxed requirements
- •Simple: Air and fuel control
- •Multi-Fuel: Natural gas, bio-based gas, and pre-vaporized liquids

Full < 3ppm NOx

Pilot < 5ppm NOx

Status of Catalytic Combustion

Completion of low emission technologies is critical to the Nation's energy security

Catalytica

- Three Kawasaki M1A-13X Turbines to be installed for Distributed Generation in the Northeast U.S.
- Agreement of sale of six GE PGT 10 gas turbines to Alliance Power

PCI

 Competitive catalytic technology option enjoys high interest of several OEMs

Alzeta

 High potential for economic solution including uncontrolled markets

Summary

- Gas turbines will continue to play an important role in the Energy future of the United States by providing clean, reliable, and environmentally-friendly power for the new millennium
- Gas Turbines will be a strong competitive option for distributed power
- Materials technology is a key enabler for advances in gas turbines
- Continued government/industry collaborations will leverage our resources and advance technologies